Q.P. Code: 16EC3810						
Reg. I	No:					
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)						
M.Tech I Year II Semester (R16) Regular Examinations May/June 2017 CODING THEORY & TECHNIQUES (DECS)						
Time: 3	hour	(For Students admitted in 2016 only) 's Max. Mark (Answer all Five Units 5 X 12 =60 Marks)	s: 60			
1	a.	Explain the concept of mathematical and logarithmic measure of information with example.	6M			
	b.	Define the following terms. i) Entropy ii) Pate of information				
		iii) Mutual information	6M			
2	a.	Prove that $H(X, Y) = H(X/Y) + H(Y)$ = $H(Y/X) + H(X)$	6M			
	b.	State and prove properties of Entropy.	6M			
3	а.	Find codes for the following message ensembles using Shanon- Fano coding. [X] = [x1 x2 x3 x4 x5 x6 x7] $[P] = [0.4 0.2 0.12 0.08 0.08 0.08 0.04]$	6M			
	b.	Explain the concept of Syndrome decoding. OR	6M			
4	a.	Construct (6,3) code for all possible data words taking the generator matrix as $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$				
	b.	L0 0 1 1 1 0J Explain error detecting and correcting capability of Linear block codes.	6M 6M			

UNIT-III

5	a.	The generator polynomial of a(7, 4) cyclic code is $g(x) = 1 + x^2 + x^3$. Find the codeword for the message $D = [1110]$ in the form of i) Systematic	
	b.	Explain the following:	6IVI
		i. Hamming distance	6М
		OR	OIVI
6	a.	Draw the block diagram of general type-II one step majority-logic decoder and explain it.	6M
	b.	Explain Syndrome decoding procedure for Hamming codes.	6M
7	a.	How trellis diagram is used to encoding and decoding of convolution codes.	6M
	b.	Construct the syndrome decoder for $(7, 4)$ cyclic code whose generator polynomial is $g(x) = x^3 + x + 1$.	6M
		OR	
8	а.	Consider the (3, 1, 2) convolutional code with $g^{(1)}=(110)$ $g^{(2)}=(101)$ $g^{(3)}=(111)$ i) Draw the encoder block diagram ii) Find the generator matrix.	
		iii)Find code word corresponding to the information sequence given $\frac{1}{1}$	CM.
	b.	Explain Sequential decoding of convolution codes.	6M
9	a. b.	Explain error correcting procedure for BCH codes. Write a stack sequential decoding algorithm for convolution codes.	6M 6M
		OR	
10	a.	Explain in detail the Viterbi algorithm for decoding of convolutional codes with a suitable example.	6M
	b.	Explain construction of Falois Fields GF.	6M

*** END ***